Официальный интернет-магазин производителя
Меню

Какой мощности выбрать стабилизатор?

2 августа 2018

Мощность является важнейшим параметром любого стабилизатора напряжения. Если она подобрана неверно, то прибор, независимо от топологии, точности и быстродействия, не сможет нормально функционировать и не справится со своими задачами.

В этой статье мы более подробно разберем вопрос правильного подбора стабилизатора напряжения по мощности.

Алгоритм расчёта мощности стабилизатора

При подборе необходимой модели стабилизатора напряжения его неправильно рассчитанная мощность может привести к следующим последствиям:

  • стабилизатор с выходной мощностью, меньшей, чем требуется, будет постоянно отключаться или вообще не запустится, а возможно и выйдет из строя;
  • приобретение устройства с мощностью, намного превышающей требуемое значение, будет бесполезной тратой средств. Прибор в процессе работы будет недозагружен, что снизит его КПД.

Для определения актуальной мощности стабилизатора и правильного выбора подходящей модели рекомендуем придерживаться алгоритма, состоящего из трёх действий:

  1. Выяснить мощность нагрузки.
  2. Прибавить запас к значению мощности, потребляемой нагрузкой.
  3. Подобрать по итоговой величине подходящую модель стабилизатора.

Разберём три указанных пункта и проанализируем наиболее распространённые ошибки, сопутствующие каждому из них.

Выясняем мощность подключенной к стабилизатору нагрузки

Мощность нагрузки равняется сумме мощностей всех подключённых к стабилизатору устройств. Перед расчетом суммарного значения мощности необходимо выяснить энергопотребление каждого из потребителей. Это сделать очень просто: мощность электроприборов обычно указывается в технической документации и дублируется на заводской табличке, прикреплённой к изделию.

Несмотря на видимую простоту действия, на данном этапе можно совершить несколько серьёзных ошибок, которые повлекут за собой выбор стабилизатора, не подходящего под ваши задачи.

Особое внимание стоит обратить на оборудование, для которого указывается несколько мощностей: насосы, обогревательная, звуковая, климатическая техника и т.д. Важно различать мощность электрическую и мощность, выдаваемую изделием при выполнении своих прямых задач, например, тепловую – для нагревательных котлов, охлаждения – для кондиционеров, звуковую – для аудиосистем.

У электроприборов, конструкция которых содержит ёмкостные компоненты или электродвигатели, активная и полная мощности могут существенно различаться. Поэтому приобретение рассчитанного на 1000 ВА стабилизатора при нагрузке в 1000 Вт может стать неверным решением – прибор окажется перегружен со всеми вытекающими отсюда последствиями.

Во избежание данной ошибки, следует перевести Ватты в Вольт-Амперы и проанализировать не только активную, но и полную мощность нагрузки. Перевод из Ватт в Вольт-Амперы осуществляется делением значения в Ваттах на специальный параметр – коэффициент мощности или cos(φ): ВА=Вт/cos(φ).

Сos(φ) отражает зависимость активной мощности устройства от полной. Чем ближе величина cos(φ) к единице, тем меньше энергии рассеивается в виде электромагнитного излучения и тем больше преобразуется в полезную работу.

Численное значение cos(φ) обычно (но не всегда) указанно в технической документации прибора, потребляющего переменный ток (может обозначаться как «cos(φ)», «Power Factor» или «PF»). Если производитель не предоставил информацию о коэффициенте мощности своего изделия, то для бытовой техники допустимо принять cos(φ) в пределах 0,7-0,8, кроме устройств, преобразующих электроэнергию в свет и тепло (лампы накаливания, электрочайники, утюги и т.д.), для них интервал значений коэффициента мощности – 0,9-1.

Современная техника, в первую очередь компьютеры, часто оснащается блоком питания с коррекцией коэффициента мощности, которая приближает данный параметр к единице – 0,95-0,99. Если уверенности в наличии такой функции (обозначается «PFC» или «ККМ») нет, то для cos(φ) рекомендуется применить значение из указанного в предыдущем абзаце типового диапазона.

Полную мощность нагрузки следует рассчитывать с использованием только значения коэффициента мощности оборудования, соответствующего этой нагрузке, а не с использованием значения входного коэффициента мощности стабилизатора!

Производители указанной техники иногда приводят максимальное энергопотребление непосредственно в характеристиках каждой модели, а иногда наоборот – дают только номинальное значение мощности, стараясь не привлекать внимание к неминуемым скачкам тока. Рекомендуем внимательно изучить сопутствующую любому оборудованию документацию и поискать информацию о фактической мощности, потребляемой устройством при пуске и в различных режимах работы. Мощность нагрузки определяется с использованием наибольшего из приведённых для каждого устройства значений!

Помимо механизмов с электродвигателями, высокие пусковые токи характерны и осветительным приборам. Причем не только с галогенными лампами и лампами накаливания, но и с популярным в последнее время светодиодными. Светодиоды не имеют пусковых токов, но большинство светильников, реализованных на их базе, снабжены конденсаторами, включение которых вызывает резкое увеличение потребляемого тока.

При выборе стабилизатора для защиты крупной светотехнической системы следует учесть, что значение мощности, возникающее при запуске такой системы, может многократно превышать номинальное.

Прибавляем запас по мощности

Правильно выбранный стабилизатор должен иметь выходную мощность, превышающую мощность, необходимую для электропитания нагрузки. Разница между мощностью стабилизатора и фактическим энергопотреблением нагрузки называется запасом мощности.

Рекомендуемый запас составляет 30% от величины энергопотребления нагрузки. Данное значение позволит:

  • подключить к устройству в процессе эксплуатации дополнительные приборы, мощность которых не учитывалась при изначальном расчёте нагрузки;
  • избежать перегрузки в случае сильного падения напряжения в электросети.

Дадим разъяснение по второму пункту. Дело в том, что мощность стабилизатора при выходе питающего напряжения из определённых пределов (рабочего диапазона) уменьшается. В частности, при 135 В в сети, стабилизатор вместо заявленных 500 ВА выдаст только 400 ВА и, соответственно, не сможет запитать предельную к его номиналу нагрузку.

Для некоторого оборудования рекомендуется заложить запас мощности свыше 30%. Это, например, кондиционеры или IT-техника. В первом случае, данное решение объясняйся ростом потребляемой кондиционером мощности в процессе эксплуатации устройства (вызвано неизбежным загрязнением фильтрующей сетки). Во втором случае – тенденцией к постоянному увеличению мощностей телекоммуникационного оборудования.

Подбираем модель стабилизатора

Для определения подходящей по мощности модели необходимо сверить мощностной ряд предлагаемых производителем стабилизаторов с энергопотреблением нагрузки – ближайшее в большую сторону значение в мощностном ряду и будет необходимой мощностью стабилизатора.

Пример подбора стабилизатора по мощности

Стабилизатор приобретается для одновременной защиты трех однофазных потребителей. Не будем акцентировать внимание на конкретном виде устройств, назовем их просто: потребитель 1, потребитель 2 и потребитель 3.

Согласно заводским паспортам:

  • номинальная мощность потребителя 1 составляет 600 Вт, потребителя 2 – 130 Вт, потребителя 3 – 700 Вт;
  • коэффициент мощности потребителей 1 и 2 равен 0,7, потребителя 3 – 0,95.

Определяем мощность нагрузки. Пусть потребитель 1 относится к категории оборудования, характеризующегося наличием высоких пусковых токов. При расчёте используем не его номинальную мощность, а максимальную – пусковую, равную согласно технической документации 1800 Вт. Используя вышеуказанную формулу, переведём мощность каждого потребителя из Вт в ВА:

  • 1800 / 0,7 = 2571,4 ВА – для потребителя 1;
  • 130 / 0,7 = 185,7 ВА – для потребителя 2;
  • 700 / 0,95 = 736,8 ВА – для потребителя 3.

Теперь определим суммарную потребляемую мощность планируемой нагрузки в Вт и ВА:

  • 1800 + 130 + 700 = 2630 Вт;
  • 2571,4 + 185,7 + 736,8 = 3493,9 ВА.

Дальнейший выбор стабилизатора будем проводить, учитывая, что полная мощность нагрузки на устройство составит 3493,9 ВА, а активная – 2630 Вт (обратите внимание на разницу значений в Вт и ВА).

Далее определяем запас мощности. Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:

  • 2630 х 0,3 = 789 Вт – запас активной мощности;
  • 34,939 х 0,3 = 1048,17 ВА – запас полной мощности.

Следовательно мощность нагрузки с учётом запаса составит:

  • 2630 + 789 = 3419 Вт;
  • 3493,9 + 1048,17 = 4542,07 ВА.

Ближайшая с большей стороны к расчётным значениям мощность – 5000 ВА и 4500 Вт, следовательно, именно такой стабилизатор подходит для подключения потребителя 1, потребителя 2 и потребителя 3.

Нагрузку со значением полной мощности в 4542,07 ВА и активной – в 3419 Вт, возможно подключить к одной фазе трехфазного стабилизатора с выходной мощностью 15000 ВА / 13500 Вт, в котором отдельная фаза выдаст максимально – 5000 ВА / 4500 Вт.

Выбрать менее мощную модель стабилизатора позволит распределение нагрузки, то есть подключение каждого потребителя к отдельной фазе. Наибольшая нагрузка будет на фазе, питающей потребитель 1, энергопотребление которого – 1800 Вт / 2571,4 ВА.

Рассчитаем необходимый потребителю 1 запас мощности (примем рекомендованное значение запаса в 30%):

  • 1800 х 0,3 = 540 Вт – запас активной мощности;
  • 2571,4 х 0,3 = 771,4 ВА – запас полной мощности;
  • 1800 + 540 = 2340 Вт – активная мощность потребителя 1 с учётом запаса;
  • 2571,4 + 771,4 = 3342,8 ВА – полная мощность потребителя 1 с учётом запаса.

Значит, максимально возможная нагрузка на одну фазу стабилизатора при условии подключения трех потребителей к различным фазам может составить: 3342,8 ВА / 2340 Вт.

Выберем модель стабилизатора с выходной мощностью 10000 ВА / 8000 Вт, в которой допустимая нагрузка на одну фазу приблизительно равна 3333 ВА / 2666 Вт. В данном случае допустимо выбрать стабилизатор с полной мощностью чуть меньшей, чем расчётная – фактически это снизит запас по мощности для потребителя 1 на 1-2%.

Подводим итог

Во избежание ошибок при определении мощности стабилизатора и траты денег на прибор, который в итоге окажется бесполезным, необходимо:

  • использовать при расчёте мощности нагрузки значение мощности, потребляемой электроприбором из сети, а не значение мощности, характеризующей полезную работу этого электроприбора;
  • использовать при расчёте полной мощности нагрузки коэффициент мощности, соответствующий этой нагрузке, а не входной коэффициент мощности стабилизатора;
  • рассчитывать мощность нагрузки с обязательным учётом пусковых токов для всех устройств, характеризующихся их высоким значением;
  • при необходимости переводить Вт в ВА и анализировать мощность нагрузки в единицах измерения соответствующих единицам, на основе которых выстроен мощностной ряд стабилизаторов;
  • выбирать мощность стабилизатора с учетом необходимого запаса;
  • выбирать стабилизатор с номинальной мощностью выше, чем расчётная мощность нагрузки (допустимо лишь небольшое округление нагрузочной мощности в меньшую сторону, при условии наличия предварительно заложенного запаса мощности);
  • выбирать трехфазный стабилизатор для однофазной нагрузки, анализируя не только номинальную выходную мощность устройства, но и мощность отдельной фазы.

Внимательность при расчетах и соблюдение всех вышеприведённых правил поможет подобрать модель стабилизатора, отвечающую требованиям вашей нагрузки. В случае возникновения любых сложностей и вопросов рекомендуем проконсультироваться со специалистами!

Мощностной ряд стабилизаторов напряжения «Штиль»

Российский производитель систем электропитания «Штиль» предлагает следующие инверторные стабилизаторы напряжения:

  • однофазные модели настенного исполнения с выходной мощностью 0,3-18 кВт;
  • однофазные модели напольного/стоечного исполнения с выходной мощностью 0,8-18 кВт;
  • модели конфигурации 3 в 1 напольного/стоечного исполнения с выходной мощностью 5,4-16 кВт;
  • трехфазные модели напольного/стоечного исполнения с выходной мощностью 5,4-16 кВт.

Все устройства являются стабилизаторами нового поколения. Они работают на основе бестрансформаторной технологии двойного преобразования энергии, за счет которой достигается:

  • мгновенная стабилизация напряжения в диапазоне 90-310 В с высокой точностью (±2%);
  • электропитание ответственной нагрузки напряжением идеальной синусоидальной формы;
  • бесперебойное электроснабжение потребителей при кратковременных отключениях сети (до 200 мс).

Подробнее с модельным рядом инверторных стабилизаторов «Штиль» можно ознакомиться, перейдя по ссылке:
Cтабилизаторы напряжения «Штиль» инверторного типа.

Где купить стабилизатор напряжения «Штиль» необходимой мощности?

Купить стабилизатор напряжения с необходимой выходной мощностью можно через наш официальный интернет-магазин российского производителя «Штиль». На сайте можно подробно ознакомиться с техническими характеристиками и возможностями каждого изделия, изучить реальные отзывы пользователей о работе оборудования и скачать дополнительную информацию: инструкцию по эксплуатации, сертификаты соответствия техническим регламентам, презентации и брошюры с описанием всего модельного ряда стабилизаторов «Штиль» и дополнительных аксессуаров к ним.

Оборудование могут приобрести как физические, так и юридические лица. Доставка осуществляется в любой город России ведущими транспортными компаниями. При оформлении заказа на сайте можно выбрать удобный способ оплаты или оформить кредит через сервис Сбербанка.

При возникновении трудностей в подборе модели стабилизатора можно проконсультироваться со специалистами компании «Штиль» в онлайн-чате, по электронной почте или телефону.


Читайте также

12 апреля 2022

Особенности подбора стабилизатора напряжения при подключении до или после генератора
Разбираем возможные проблемы автономного питания от генераторов, причины их возникновения и способы устранения с помощью стабилизаторов.

6 апреля 2022

Какой стабилизатор напряжения выбрать для защиты компьютера от перепадов напряжения?
Срок службы компьютера в условиях некачественного электропитания сокращается. Подключаем стабилизатор напряжения!

1 апреля 2022

Подробная инструкция по выбору стабилизатора напряжения для квартиры
Даем пошаговую инструкцию, как правильно подобрать стабилизатор для защиты электроприборов в вашей квартире.

23 марта 2022

Инверторные стабилизаторы: устройство, принцип работы, преимущества и недостатки
В 2015 году «Штиль» представлен новый продукт – инверторные стабилизаторы с технологией двойного преобразования.

18 ноября 2021

Как выбрать стабилизатор напряжения для насоса?
Нередко причиной нарушения работы насоса становятся перепады напряжения. Чтобы этого избежать, необходимо установить стабилизатор напряжения.

26 октября 2021

Нужен ли стабилизатор напряжения для стиральных машин?
Выбираем лучший стабилизатор напряжения для защиты стиральной машины от некачественного электроснабжения в квартирах и загородных домах.

23 сентября 2021

Встроенные и внешние средства защиты холодильников от колебаний напряжения
Срок службы холодильника зависит от соблюдения правил эксплуатации, в частности, от обеспечения качественного электроснабжения.

2 сентября 2021

Однофазные стабилизаторы напряжения: типы, особенности, характеристики
В этой статье мы поговорим об однофазных стабилизаторах, рассмотрим их основные типы, особенности и характеристики.

20 августа 2021

Зачем нужен стабилизатор напряжения в коттедже или частном доме?
Оптимальным вариантом комплексной защиты дома от перебоев электропитания является использование стабилизатора напряжения. Выбирать такое устройство для домашнего применения следует очень внимательно и рационально.

29 июля 2021

ТОП-5 способов, как защитить телевизор от скачков напряжения
Какой из существующих способов защиты телевизора от скачков напряжения лучше? В нашей статье ответ на этот вопрос.
7 890 ₽
14 540 ₽
20 400 ₽
21 070 ₽
27 390 ₽
28 640 ₽
34 960 ₽
48 130 ₽
54 770 ₽