Устройство и принцип работы электромеханического стабилизатора

В основе первых электромеханических стабилизаторов использовался автотрансформатор с ручной корректировкой напряжения: периодически контролируя изменение входного напряжения по стрелочному вольтметру стабилизатора, приходилось вручную выставлять коэффициент трансформации для достижения нормального уровня напряжения в сети.

Принцип работы современного электромеханического, как и упомянутого выше его более раннего аналога, может быть описан таким явлением, как электромагнитная индукция. Магнитный поток, проходящий по сердечнику трансформатора и образуемый током, протекающим в первичной обмотке, индуцирует ЭДС во вторичной обмотке, под действием которой при наличии нагрузки будет протекать электрический ток.

Корректировка уровня напряжения в стабилизаторах этого типа производится изменением коэффициента трансформации – в обоих случаях перемещением токосъемного графитового контакта по обмотке трансформатора. Иначе говоря, съемом напряжения с определенных витков катушки автотрансформатора.

Отличие современных устройств заключаются в том, что изменение коэффициента трансформации реализуется автоматическим перемещением токосъемного контакта, выполняемого серводвигателем. Управление сервоприводом осуществляется сигналом, поступаемым с платы управления на сервопривод при отклонении напряжения в питающей сети от заданной нормы.

Схема электромеханического стабилизатора картинка

Достоинства и недостатки электромеханических стабилизаторов

К очевидным и наиболее важным преимуществам электромеханических стабилизаторов можно отнести следующее:

  • надежность в эксплуатации (способность работать при больших перегрузках и в достаточно широком диапазоне напряжения сети);
  • стабильность и высокая точность (максимальное соответствие напряжения на выходе значению нормы);
  • плавность стабилизации;
  • высокий КПД;
  • относительно невысокая стоимость.

В подтверждение последнего можно заметить, что в настоящее время по своей доступности в отношении цены сервоприводные стабилизаторы напряжения незначительно проигрывают разве что устройствам релейного типа.

Серьезными недостатками электромеханических стабилизаторов являются:

  • очень низкая скорость реагирования на отклонение питающего напряжения от нормы;
  • наличие движущихся элементов в конструкции (необходимость регулярного обслуживания для обеспечения безотказной работы);
  • шум в работе;
  • узкий диапазон рабочих температур (от -5 до 40 °C);
  • требовательность к условиям эксплуатации (высокая чувствительность к проникновению пыли и влаги).

Возможно, наличие движущихся деталей конструкции в приведенном выше списке недостатков покажется излишним или малозначительным. Действительно, даже далеким от электротехники людям хорошо известно, что для безотказной работы любого электроприбора потребуется его какое-то, пусть и минимальное, но регулярное профилактическое обслуживание.

Однако, в рассматриваемом случае, удачным решением применение современными производителями сервоприводов как основных узлов конструкции можно назвать, пожалуй, только в плане удешевления продукции. Дело в том, что сервоприводы, обладая высокими показателями системы позиционирования, как и любые механические приводы, серьезно уязвимы из-за своих конструктивных особенностей. Детали привода, понижающий обороты редуктор, обеспечивающий необходимый крутящий момент для перемещения токосъемных щеток, находящихся в постоянном движении при нестабильном сетевом напряжении, наиболее подвержены механическому износу, сокращающему срок службы стабилизатора.

Ограничения по применению сервоприводных стабилизаторов

Широкое применение устройств этого типа для питания как бытовой, так и промышленной техники в настоящее время обусловлено, прежде всего, их бюджетностью.

Безусловно, вопрос цены сегодня – фактор более чем немаловажный. Однако, можно с большой уверенностью сказать, что, существенно уступая в цене, например, аналогам инверторного типа, электромеханические стабилизаторы, тем не менее, существенно проигрывают последним практически и по всем своим эксплуатационным параметрам. Поэтому очевидно, что область их применения несколько ограничена. Разберём эти ограничения подробнее.

Частые и значительные перепады напряжения

Однозначно нельзя рекомендовать использовать стабилизаторы этого типа в сетях с частыми и значительными перепадами напряжения. При работе устройства в таких условиях не стоит рассчитывать на его долгий срок службы, так как интенсивность режима работы сервопривода неизбежно приведет к скорому износу деталей привода и токосъемной системы (угольных контактных щеток).

Несмотря на способность работать в довольно широком диапазоне входного напряжения, применение электромеханического стабилизатора в сетях с большой просадкой также вряд ли можно назвать хорошим решением. Из-за шумности работы в нагруженном режиме эксплуатации сервоприводные стабилизаторы малопригодны для установки в жилых помещениях.

Низкая скорость срабатывания

Не стоит приобретать электромеханичекие стабилизаторы для питания нагрузки, требовательной к стабильности напряжения. В скорости реагирования на отклонения напряжения на входе, электромеханика, проигрывая даже релейным аналогам в десятки раз, оставляет желать лучшего.

Температура эксплуатации

Еще один значимый фактор, ограничивающий приобретение электромеханических стабилизаторов, – это требовательность к температуре эксплуатации. Если верхний порог диапазона температуры эксплуатации электромеханических стабилизаторов более-менее приемлем (до 40 °C) и позволяет использовать устройства практически везде, то нижний (обычно не превышающий -5 °C) исключает возможность их установки в неотапливаемых помещениях – гаражах, хозяйственных постройках.

В каких случаях применение электромеханики все-же будет целесообразным?

Достаточно обоснованным использование сервоприводных устройств видится в быту при небольших нагрузках потребления в сетях с небольшими просадками по напряжению.

Многие пользователи, особенно те, у кого есть дачи, наверняка хорошо осведомлены о состоянии сельских, дачных или даже городских электросетей в частном жилом секторе и на практике не раз сталкивались с некачественным электроснабжением. Поэтому использование электромеханики хорошо востребовано в быту – как относительно эффективное и недорогое решение.

Рассматривая характер подключенной нагрузки, можно смело порекомендовать их для стабилизации выходного напряжения в сетях освещения. Плавность стабилизации полностью устраняет или частично сглаживает перепады сетевого напряжения, делая менее заметными и раздражающими глаза скачки света, излучаемого лампами светильников. Справедливости ради, заметим, что это относится лишь к светильникам с лампами накаливания и галогенными лампами. С осветительными приборами с газоразрядыми, работающими с пускорегулирующей аппаратурой, или набирающими все большую популярность светодиодными лампами подобного эффекта, разумеется, не будет.

Инверторный стабилизатор напряжения как альтернатива электромеханическим

Взвесив все наиболее значимые достоинства и недостатки электромеханических стабилизаторов, подведем краткий итог общей целесообразности их использования.

Сервоприводное устройство хорошо подойдет как недорогое решение вопроса коррекции питающего напряжения для нетребовательной к скорости реагирования на его отклонения от нормы нагрузки.

Для питания высокотехнологичных устройств (оргтехники, электроприборов на микропроцессорной базе самого различного назначения) порекомендовать к использованию сервомоторные стабилизаторы нельзя.

Более предпочтительными в применении, безусловно, являются устройства нового поколения – стабилизаторы напряжения инверторного типа, у которых скорость реагирования на отклонение входного напряжения от нормы значительно выше.

Являясь более совершенными на сегодняшний день устройствами и имея, без преувеличения, значительное превосходство по всем рабочим характеристикам над электромеханическими, инверторные преобразователи напряжения являются гораздо более предпочтительными и универсальными в использовании.

Довольно значимым недостатком инверторных стабилизаторов на сегодняшний день, конечно, является их довольно высокая стоимость. Однако, следует понимать, что если в приоритете получение бесперебойного и качественного электроснабжения, то выбор однозначно стоит отдать преобразователям напряжения инверторного типа.